A chemical-infused scaffold generates new tissue by attracting stem cells.
Today's titanium replacement joints work very well for 10 to 15 years, but replacing them after they've worn out is a challenge for both patient and surgeon. A team of researchers from Columbia University proposes a way around that problem: by implanting a scaffold that encourages the patient's own stem cells to regrow the joint.
In research published this week in The Lancet, the researchers demonstrate that the technology--a joint-shaped scaffold infused with a growth factor protein--works in rabbits. About a month after the implant, the animals began using their injured forelimbs again, and at two months the animals moved almost as well as similarly aged healthy rabbits. The study is the first to show that an entire joint can be repaired while being used.
"They used the potential of the body as a bioreactor, instead of doing everything in the petri dish," says Patrick H. Warnke, a professor of surgery at Bond University. Warnke wrote a commentary on the Columbia study for The Lancet. While the connection between bone and the titanium in existing implants wears out over time, the hope for this alternative approach is that the new bone formed by the stem cells will create a more natural and durable connection, and that the scaffold itself would disintegrate over time.
To read the full, original article click on this link: Technology Review: Helping Joints Regrow Themselves
Author: Karen Weintraub